ADuM3440/ADuM3441/ADuM3442

FEATURES

Low power operation
5 V operation
1.7 mA per channel maximum @ 0 Mbps to 2 Mbps

68 mA per channel maximum @ 150 Mbps
3.3 V operation
1.0 mA per channel maximum @ 0 Mbps to 2 Mbps

33 mA per channel maximum @ 150 Mbps
Bidirectional communication
3.3 V/5 V level translation

High temperature operation: $105^{\circ} \mathrm{C}$
High data rate: dc to 150 Mbps (NRZ)
Precise timing characteristics
5 ns maximum pulse width distortion
5 ns maximum channel-to-channel matching
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
Output enable function
16-lead SOIC wide body package
Safety and regulatory approvals
UL recognition: 2500 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
VDE certificate of conformity
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
$V_{\text {IORM }}=560 \mathrm{~V}$ peak

APPLICATIONS

High speed multichannel isolation
SPI interface/data converter isolation

Instrumentation

GENERAL DESCRIPTION

The ADuM344x ${ }^{1}$ are four channel, digital isolators based on the Analog Devices, Inc., iCoupler technology supporting data rates up to 150 Mbps . Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices.
By avoiding the use of LEDs and photodiodes, i Coupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple i Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these i Coupler products.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1. ADuM3440 Functional Block Diagram

Figure 2. ADuM3441 Functional Block Diagram

Figure 3. ADuM3442 Functional Block Diagram

Furthermore, iCoupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates.
The ADuM344x isolators provide four independent isolation channels in a variety of channel configurations (see the Ordering Guide). The ADuM344x operates with the supply voltage on either side ranging from 3.0 V to 5.5 V , providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. In addition, the ADuM344x provides low pulse width distortion and tight channel-to-channel matching. Unlike other optocoupler alternatives, the ADuM 344 x isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during the power-up/power-down condition.
${ }^{1}$ Protected by U.S. Patents $5,952,849 ; 6,873,065 ; 6,903,578 ;$ and $7,075,329$. Other patents are pending.

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^0]
ADuM3440/ADuM3441/ADuM3442

TABLE OF CONTENTS

Features1Applications 1
Functional Block Diagrams 1
General Description 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V Operation 3
Electrical Characteristics-3.3 V Operation 5
Electrical Characteristics—Mixed $5 \mathrm{~V} / 3.3 \mathrm{~V}$ or 3.3 V/5 V Operation 7
Package Characteristics 10
Regulatory Information 10
Insulation and Safety-Related Specifications 10
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics 11
Recommended Operating Conditions 11
REVISION HISTORY9/08-Rev. A to Rev. BChanges to Pulse Width Distortion, $\left|\mathrm{t}_{\text {pLH }}-\mathrm{t}_{\text {PHL }}\right|$ Parameter andChannel-to-Channel Matching, Codirectional ChannelsParameter, Table 13
Changes to Pulse Width Distortion, |ttplh - tphl \mid Parameter andChannel-to-Channel Matching, Codirectional ChannelsParameter, Table 25
Changes to Pulse Width Distortion, $\left|t_{\text {PLH }}-t_{\text {PHL }}\right|$ Parameter andChannel-to-Channel Matching, Codirectional ChannelsParameter, Table 38
5/08-Rev. 0 to Rev. A
Changes to Ordering Guide 21
11/07—Rev. 0: Initial Version
Absolute Maximum Ratings 12
ESD Caution 12
Pin Configurations and Function Descriptions 13
Typical Performance Characteristics 16
Applications Information 18
PC Board Layout 18
Propagation Delay-Related Parameters. 18
System-Level ESD Considerations and Enhancements 18
DC Correctness and Magnetic Field Immunity 18
Power Consumption 19
Insulation Lifetime 20
Outline Dimensions 21
Ordering Guide 21

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All voltages are relative to their respective ground. $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	IDOI(0)		0.75	1.3	mA	
Output Supply Current per Channel, Quiescent	IDDO (0)		0.5	1.2	mA	
ADuM3440, Total Supply Current, Four Channels ${ }^{1}$ DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\operatorname{loD1}$ (0)		3	3.9	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{ldD2}(0)$		2	3	mA	DC to 1 MHz logic signal frequency
150 Mbps						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	IDDI (150)		120	220	mA	75 MHz logic signal frequency
$\mathrm{V}_{\text {DD2 }}$ Supply Current	lod2 (150)		47	55	mA	75 MHz logic signal frequency
ADuM3441, Total Supply Current, Four Channels ${ }^{1}$ DC to 2 Mbps						
$V_{\text {DD1 }}$ Supply Current	$\mathrm{loD1} \mathrm{(0)}$		2.8	3.6	mA	DC to 1 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current	lod2 (0)		2.3	2.9	mA	DC to 1 MHz logic signal frequency
150 Mbps						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	lodi (150)		101	165	mA	75 MHz logic signal frequency
$\mathrm{V}_{\text {DD } 2}$ Supply Current	loD2 (150)		65	80	mA	75 MHz logic signal frequency
ADuM3442, Total Supply Current, Four Channels ${ }^{1}$ DC to 2 Mbps						
$V_{D D 1}$ or $V_{D D 2}$ Supply Current	$\mathrm{loD1}(0), \mathrm{IDD2}$ (0)		2.5	3.5	mA	DC to 1 MHz logic signal frequency
150 Mbps $\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{IDD1}$ (150), $\mathrm{IDD2}$ (150)		83	130	mA	75 MHz logic signal frequency
For All Models						
Input Currents	$\mathrm{I}_{\mathrm{I},}, \mathrm{I}_{\mathrm{E} 1}, \mathrm{I}_{\mathrm{E} 2}$	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq V_{I A 1}, V_{I B}, V_{1 C}, V_{I D} \leq V_{D D 1} \text { or } V_{D D 2} \\ & 0 \leq V_{E 1}, V_{E 2} \leq V_{D D 1} \text { or } V_{D D 2} \end{aligned}$
Logic High Input Threshold	$\mathrm{V}_{\mathrm{HH}}, \mathrm{V}_{\text {EH }}$	2.0			V	
Logic Low Input Threshold	$V_{\text {IL, }} \mathrm{V}_{\text {EL }}$			0.8	V	
Logic High Output Voltages	$\mathrm{V}_{\text {оан }} \mathrm{V}_{\text {овн, }}$ $\mathrm{V}_{\mathrm{OCH}}, \mathrm{V}_{\text {ODH }}$	$\begin{array}{\|l} \left(V_{\mathrm{DD} 1}\right. \text { or } \\ \left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.1 \end{array}$	5.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IXH }}$
		$\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD} 1}\right. \text { or } \\ & \left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.4 \end{aligned}$	4.8		V	$\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxH }}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL, }} \mathrm{V}_{\text {OBL, }}$ Vocl, Vodl		0.0	0.1	V	$\mathrm{I}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$
			0.04	0.1	V	$\mathrm{l}_{\mathrm{ox}}=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {IXL }}$
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {lxL }}$
SWITCHING SPECIFICATIONS						
Minimum Pulse Width ${ }^{2}$	PW			6.67	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		150			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }}$ tPLH			32	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\mid \mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHLL }}{ }^{5}$	PWD		0.5	2	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			3		ps/ $/{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{6}$	tpsk			12	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{5}$	tPskco			2	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing Directional Channels ${ }^{5}$	tPskod			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

ADuM3440/ADuM3441/ADuM3442

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
For All Models							
Output Disable Propagation Delay (High/Low to High Impedance)	$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLH }}$			8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Enable Propagation Delay (High Impedance to High/Low)	$\mathrm{t}_{\text {PzH, }} \mathrm{t}_{\text {PzL }}$			8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CM ${ }_{\text {H }}$ \|	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}$, transient magnitude $=800 \mathrm{~V}$	
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CML		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Lx}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.2		Mbps		
Input Dynamic Supply Current per Channel ${ }^{8}$	ldDI (D)		0.196		mA/Mbps		
Output Dynamic Supply Current per Channel ${ }^{8}$	IDDO (D)		0.1		mA/Mbps		

${ }^{1}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM3440/ADuM3441/ADuM3442 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{6} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DDO}}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM3440/ADuM3441/ADuM3442

ELECTRICAL CHARACTERISTICS—3.3 V OPERATION

All voltages are relative to their respective ground. $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.3 \mathrm{~V}$.

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	IDDI (Q)		0.43	0.90	mA	
Output Supply Current per Channel, Quiescent	IDDO (Q)		0.3	0.60	mA	
ADuM3440, Total Supply Current, Four Channels ${ }^{1}$ DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	IDD1 (Q)		1.7	2.4	mA	DC to 1 MHz logic signal frequency
V DD 2 Supply Current	l DD2 (Q)		1.2	1.7	mA	DC to 1 MHz logic signal frequency
150 Mbps						
V ${ }_{\text {DD } 1}$ Supply Current	IDD1 (150)		63	110	mA	75 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current	IDD2 (150)		17	25	mA	75 MHz logic signal frequency
ADuM3441, Total Supply Current, Four Channels ${ }^{1}$DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	l D11 (Q)		1.6	2.2	mA	DC to 1 MHz logic signal frequency
V $\mathrm{DD2} 2$ Supply Current	$\mathrm{I}_{\mathrm{DD2}}(\mathrm{Q})$		1.3	1.9	mA	DC to 1 MHz logic signal frequency
150 Mbps						
$V_{\text {DD } 1}$ Supply Current	$\mathrm{ldD1}$ (150)		52	80	mA	75 MHz logic signal frequency
$V_{\text {DD2 }}$ Supply Current	IDD2 (150)		29	40	mA	75 MHz logic signal frequency
ADuM3442, Total Supply Current, Four Channels ${ }^{1}$ DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD1}}(\mathrm{Q}), \mathrm{I}_{\mathrm{DD2}}(\mathrm{Q})$		1.5	2.0	mA	DC to 1 MHz logic signal frequency
150 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{I}_{\mathrm{DD1} \text { (150), }} \mathrm{I}_{\mathrm{DD2} \text { (150) }}$		40	66	mA	75 MHz logic signal frequency
For All Models						
Input Currents	$\mathrm{l}_{\mathrm{IA}}, \mathrm{I}_{\mathrm{IB},}$ IIC, $\mathrm{I}_{\mathrm{ID}}, \mathrm{I}_{\mathrm{E} 1}, \mathrm{I}_{\mathrm{E} 2}$	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{~V}_{\mathrm{IB},}, \mathrm{~V}_{\mathrm{IC},}, \mathrm{~V}_{\mathrm{ID}} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \\ & 0 \leq \mathrm{V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2} \end{aligned}$
Logic High Input Threshold	$\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {EH }}$	1.6			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL, }}$, $\mathrm{V}_{\text {EL }}$			0.4	V	
Logic High Output Voltages	$\mathrm{V}_{\text {оан }} \mathrm{V}_{\text {овн, }}$ $\mathrm{V}_{\text {OCH, }} \mathrm{V}_{\text {ODH }}$	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD} 1} \mathrm{or}\right. \\ & \left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.1 \end{aligned}$	3.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
		$\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD} 1}\right. \text { r } \\ & \left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.4 \end{aligned}$	2.8		V	$\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
Logic Low Output Voltages	$V_{\text {oal, }} V_{\text {obl, }}$ Vocl, Vodl		0.0	0.1	V	$\mathrm{I}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$
			0.04	0.1	V	$\mathrm{l}_{0 x}=400 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$
			0.2	0.4	V	$\mathrm{l}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\text {IxL }}$
SWITCHING SPECIFICATIONS						
Minimum Pulse Width ${ }^{2}$	PW			6.67	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		150			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$			36	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD		0.5	2	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			3		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	trsk			16	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	tPSKCD			2	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing Directional Channels ${ }^{5}$	$\mathrm{t}_{\text {PSKOD }}$			5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

ADuM3440/ADuM3441/ADuM3442

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
For All Models							
Output Disable Propagation Delay (High/Low to High Impedance)	$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLH }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Enable Propagation Delay (High Impedance to High/Low)	$\mathrm{t}_{\text {PzH, }} \mathrm{t}_{\text {PzL }}$		6	8	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CM ${ }_{\text {H }}$ \|	25	35		$\mathrm{kV} / \mathrm{\mu s}$	$\mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}$, transient magnitude $=800 \mathrm{~V}$	
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CML		25	35		$\mathrm{kV} / \mathrm{\mu s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps		
Input Dynamic Supply Current per Channel ${ }^{8}$	IDDI (D)		0.076		mA/Mbps		
Output Dynamic Supply Current per Channel ${ }^{8}$	IDDo (D)		0.028		mA/Mbps		

${ }^{1}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM3440/ADuM3441/ADuM3442 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{I X}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5}$ tpsk is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ or tpLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DDO}}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM3440/ADuM3441/ADuM3442

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3.3 V OR 3.3 V/5 V OPERATION

All voltages are relative to their respective ground. $5 \mathrm{~V} / 3.3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} ; 3 \mathrm{~V} / 5 \mathrm{~V}$ operation: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.3 \mathrm{~V}$.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current per Channel, Quiescent	IDOI (0)					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			0.75	1.3	mA	
$3.3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.43	0.9	mA	
Output Supply Current per Channel, Quiescent	IDDo (e)					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			0.3	0.7	mA	
$3.3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.5	1.2	mA	
ADuM3440, Total Supply Current, Four Channels ${ }^{1}$ DC to 2 Mbps						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	$\mathrm{IDDI}_{(0)}$					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			3	3.9	mA	DC to 1 MHz logic signal frequency
$3.3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.7	2.4	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{IDD2}^{(0)}$					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			1.2	1.7	mA	DC to 1 MHz logic signal frequency
3.3 V/5 V Operation			2	3	mA	DC to 1 MHz logic signal frequency
150 Mbps						
$\mathrm{V}_{\text {DDI }}$ Supply Current	$\operatorname{lod1~(150)~}$					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			120	220	mA	75 MHz logic signal frequency
3.3 V/5 V Operation			63	110	mA	75 MHz logic signal frequency
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{IDD2}^{(150)}$					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			17	25	mA	75 MHz logic signal frequency
$3.3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			47	55	mA	75 MHz logic signal frequency
ADuM3441, Total Supply Current, Four Channels ${ }^{1}$ DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{IDDI}_{(0)}$					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			2.8	3.6	mA	DC to 1 MHz logic signal frequency
$3.3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.6	2.2	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{IDD2}^{(0)}$					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			1.3	1.9	mA	DC to 1 MHz logic signal frequency
3.3 V/5 V Operation			2.3	2.9	mA	DC to 1 MHz logic signal frequency
150 Mbps						
$\mathrm{V}_{\text {DD } 1}$ Supply Current	$\mathrm{IDDI}^{(150)}$					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			101	165	mA	75 MHz logic signal frequency
3.3 V/5 V Operation			52	80	mA	75 MHz logic signal frequency
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	IDD2 (150)					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			29	40	mA	75 MHz logic signal frequency
$3.3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			65	80	mA	75 MHz logic signal frequency
ADuM3442, Total Supply Current, Four Channels ${ }^{1}$ DC to 2 Mbps						
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	$\mathrm{IDDI}_{(0)}$					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			2.5	3.5	mA	DC to 1 MHz logic signal frequency
3.3 V/5 V Operation			1.5	2.0	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\mathrm{DD} 2}$ Supply Current	$\mathrm{IDD2}^{(0)}$					
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			1.5	2.0	mA	DC to 1 MHz logic signal frequency
$3.3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.5	3.5	mA	DC to 1 MHz logic signal frequency

ADuM3440/ADuM3441/ADuM3442

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
150 Mbps							
V ${ }_{\text {DD } 1}$ Supply Current	$\operatorname{ldD1}$ (150)						
5V/3.3 V Operation			83	130	mA	75 MHz logic signal frequency	
3.3 V/5 V Operation			40	66	mA	75 MHz logic signal frequency	
$V_{\text {DD2 }}$ Supply Current	IDD2 (150)						
5V/3.3 V Operation			40	66	mA	75 MHz logic signal frequency	
3.3 V/5 V Operation			83	130	mA	75 MHz logic signal frequency	
For All Models							
Input Currents	$I_{I A}, I_{I B}, I_{I_{C}}$ $\mathrm{I}_{\mathrm{ID}}, \mathrm{I}_{\mathrm{E} 1}, \mathrm{I}_{\mathrm{E} 2}$	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{~V}_{\mathrm{IB}}, \mathrm{~V}_{\mathrm{IC},} \mathrm{~V}_{\mathrm{ID}} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \\ & 0 \leq \mathrm{V}_{\mathrm{E} 1}, \mathrm{~V}_{\mathrm{E} 2} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2} \end{aligned}$	
Logic High Input Threshold	$\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {EH }}$						
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation		2.0			V		
3.3 V/5 V Operation		1.6			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL, }} \mathrm{V}_{\text {EL }}$						
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation				0.8	V		
3.3 V/5 V Operation				0.4	V		
Logic High Output Voltages	$V_{\text {оан, }} V_{\text {овн, }}$ $\mathrm{V}_{\text {OCH, }} \mathrm{V}_{\text {ODH }}$	($\mathrm{V}_{\mathrm{DD} 1}$ or $\left.V_{D D 2}\right)-0.1$	(V_{DD} or $V_{D D 2}$)		V	$\mathrm{l}_{0 \mathrm{x}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$	
		$\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD} 1} \mathrm{or}\right. \\ & \left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.4 \end{aligned}$	$\begin{aligned} & \left(V_{D D 1}\right. \text { or } \\ & \left.V_{D D 2}\right)-0.2 \end{aligned}$		V	$\mathrm{l}_{\mathrm{Ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xH}}$	
Logic Low Output Voltages	$V_{\text {OAL }}, V_{\text {OBL, }}$ Vocl, $V_{\text {OdL }}$		0.0	0.1	V	$\mathrm{I}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$	
			0.04	0.1	V	$\mathrm{l}_{\mathrm{ox}}=400 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times 1}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$	
SWITCHING SPECIFICATIONS							
Minimum Pulse Width ${ }^{2}$	PW			6.67	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate ${ }^{3}$		150			Mbps	$C_{L}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$			35	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\left\|t_{\text {PLH }}-t_{\text {PHLL }}\right\|^{4}$	PWD		0.5	2	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			3		ps/ ${ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay Skew ${ }^{5}$	$t_{\text {PSK }}$			15	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			2	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Opposing Directional Channels ${ }^{5}$	tpskod			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
For All Models							
Output Disable Propagation Delay (High/Low to High Impedance)	$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLH }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Enable Propagation Delay (High Impedance to High/Low)	$\mathrm{t}_{\text {PZH, }} \mathrm{t}_{\text {PZL }}$		6	8	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{f}}$					$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			3.0		ns		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.5		ns		
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\| $\mathrm{CM}_{\mathrm{H}} \mid$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & V_{1 x}=V_{D D 1} \text { or } V_{D D 2}, V_{C M}=1000 \mathrm{~V} \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CML		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Lx}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{cM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}						
5V/3.3 V Operation			1.2		Mbps		
3.3 V/5 V Operation			1.1		Mbps		
Input Dynamic Supply Current per Channel ${ }^{8}$	$\mathrm{I}_{\mathrm{DDI} \text { (D) }}$						
5V/3.3 V Operation			0.196		mA/Mbps		
3.3 V/5 V Operation			0.076		mA/Mbps		
Output Dynamic Supply Current per Channel ${ }^{8}$	$\mathrm{I}_{\text {DDO (}{ }^{\text {(}} \text {) }}$						
$5 \mathrm{~V} / 3.3 \mathrm{~V}$ Operation			0.028		mA/Mbps		
3.3 V/5 V Operation			0.01		mA/Mbps		

ADuM3440/ADuM3441/ADuM3442

${ }^{1}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM3440/ADuM3441/ADuM3442 channel configurations.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{I x}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DDO}}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM3440/ADuM3441/ADuM3442

PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input to Output) ${ }^{1}$	R-O		10^{12}		Ω	
Capacitance (Input to Output) ${ }^{1}$	Cloo		2.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	C_{1}		4.0		pF	
IC Junction-to-Case Thermal Resistance, Side 1	θ_{JcI}		33		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at
IC Junction-to-Case Thermal Resistance, Side 2	$\theta_{\text {jco }}$		28		${ }^{\circ} \mathrm{C} / \mathrm{W}$	center of package underside

${ }^{1}$ The device is considered a 2-terminal device; Pin 1 through Pin 8 are shorted together and Pin 9 through Pin 16 are shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM344x is approved by the organizations listed in Table 5. Refer to Table 10 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.

Table 5.

UL	CSA	VDE
Recognized under	Approved under	Certified according to
1577 component recognition program	1	CSA Component Acceptance Notice \#5A
Single protection,	DIN V VDE V 0884-10 (VDE V 0884-10):2006-12²	
2500 V rms isolation voltage	Basic insulation per CSA 60950-1-03 and	Reinforced insulation, 560 V peak
	IEC 60950-1, 800 V rms (1131 V peak)	
	maximum working voltage	
	Reinforced insulation per CSA 60950-1-03 and	
	IEC 60950-1, 400 V rms (566 V peak)	
	maximum working voltage	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577 , each ADuM344x is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{Vrms}$ for 1 sec (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM344x is proof tested by applying an insulation test voltage $\geq 1050 \mathrm{~V}$ peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). An asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS
Table 6.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage		2500	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L(101)	7.7 min	mm	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L(102)	8.1 min	mm	Measured from input terminals to output terminals, shortest distance path along body
Minimum Internal Gap (Internal Clearance)		0.017 min	mm	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk $\left.{ }^{*}\right)$ marking on packages denotes DIN V VDE V 0884-10 approval.

Table 7.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		VIorm	560	\checkmark peak
Input-to-Output Test Voltage, Method B1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	\checkmark peak
Input-to-Output Test Voltage, Method A	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$		
After Environmental Tests Subgroup 1			896	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }} \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\mathrm{TR}}=10$ seconds	$\mathrm{V}_{\text {TR }}$	4000	\checkmark peak
Safety-Limiting Values	Maximum value allowed in the event of a failure (see Figure 4)			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		I_{51}	265	mA
Side 2 Current		Is2	335	mA
Insulation Resistance at T_{s}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

RECOMMENDED OPERATING CONDITIONS
Table 8.

Parameter	Rating
Operating Temperature Range, T_{A}	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltage Range, $\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}{ }^{1}$	3.0 V to 5.5 V
Input Signal Rise and Fall Time	1.0 ms

${ }^{1}$ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per DIN V VDE V 0884-10

ADuM3440/ADuM3441/ADuM3442

ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 9.

Parameter	Rating
Storage Temperature Range ($\mathrm{T}_{\text {ST }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature Range (T_{A})	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages ($\left.\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{1}$	-0.5 V to +7.0 V
	-0.5 V to $\mathrm{V}_{\mathrm{DD} 1}+0.5 \mathrm{~V}$
Output Voltage ($\left.\mathrm{V}_{\text {of }}, \mathrm{V}_{\text {ob, }}, \mathrm{V}_{\text {oc, }}, \mathrm{V}_{\text {od }}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\text {DDO }}+0.5 \mathrm{~V}$
Average Output Current per Pin ${ }^{3}$	
Side 1 (l_{1})	-18 mA to +18 mA
Side 2 (loz)	-22 mA to +22 mA
	$\begin{aligned} & -100 \mathrm{kV} / \mu \mathrm{s} \text { to } \\ & +100 \mathrm{kV} / \mu \mathrm{s} \end{aligned}$

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2} \mathrm{~V}_{D D I}$ and $\mathrm{V}_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.
${ }^{3}$ See Figure 4 for maximum rated current values for various temperatures.
${ }^{4}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the Absolute Maximum Ratings can cause latchup or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Table 10. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
\quad Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
\quad Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
\quad Basic Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Reinforced Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

[^1]Table 11. Truth Table (Positive Logic)

V_{IX} Input ${ }^{1}$	$\mathrm{V}_{\text {EX }}$ Input ${ }^{\text {2 }}$	V ${ }_{\text {doI }}$ State ${ }^{1}$	VDoo State ${ }^{1}$	Vox Output ${ }^{1}$	Notes
H	H or NC	Powered	Powered	H	
L	H or NC	Powered	Powered	L	
X	L	Powered	Powered	Z	
X	H or NC	Unpowered	Powered	H	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DII }}$ power restoration.
X	L	Unpowered	Powered	Z	
X	X	Powered	Unpowered	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDo }}$ power restoration if V_{Ex} state is H or NC . Outputs return to high impedance state within 8 ns of $\mathrm{V}_{\mathrm{DDo}}$ power restoration if V_{EX} state is L .

[^2]
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND $_{1}$ IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 5. ADuM3440 Pin Configuration

Table 12. ADuM3440 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.
2,8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	VIC	Logic Input C.
6	VID	Logic Input D.
7	NC	No Connect.
9, 15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2. Active high logic input. $\mathrm{V}_{\mathrm{OA}}, \mathrm{V}_{\mathrm{OB}}, \mathrm{V}_{\mathrm{OC}}$, and V_{OD} outputs are enabled when $\mathrm{V}_{\mathrm{E} 2}$ is high or disconnected. $V_{O A}, V_{O B}, V_{O C}$, and $V_{O D}$ outputs are disabled when $V_{E 2}$ is low. In noisy environments, connecting $V_{E 2}$ to an external logic high or low is recommended.
11	Vod	Logic Output D.
12	Voc	Logic Output C.
13	$\mathrm{V}_{\text {OB }}$	Logic Output B.
14	$\mathrm{V}_{\text {OA }}$	Logic Output A.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2, 3.0 V to 5.5 V.

ADuM3440/ADuM3441/ADuM3442

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO	GND $_{1}$ IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND
CONNECTING BOTH TO GND	

Figure 6. ADuM3441 Pin Configuration

Table 13. ADuM3441 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.
2,8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	VIC	Logic Input C.
6	$V_{\text {od }}$	Logic Output D.
7	$V_{E 1}$	Output Enable 1. Active high logic input. $V_{O D}$ output is enabled when $V_{E 1}$ is high or disconnected. $V_{O D}$ is disabled when $V_{E 1}$ is low. In noisy environments, connecting $\mathrm{V}_{\mathrm{E} 1}$ to an external logic high or low is recommended.
9,15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2. Active high logic input. $V_{O A}, V_{O B}$, and $V_{O C}$ outputs are enabled when $V_{E 2}$ is high or disconnected. $V_{O A}, V_{O B,}$ and $V_{\text {Oc }}$ outputs are disabled when $V_{E 2}$ is low. In noisy environments, connecting $\mathrm{V}_{\mathrm{E} 2}$ to an external logic high or low is recommended.
11	$V_{\text {ID }}$	Logic Input D.
12	Voc	Logic Output C.
13	$\mathrm{V}_{\text {ов }}$	Logic Output B.
14	$\mathrm{V}_{\text {OA }}$	Logic Output A.
16	$V_{\text {DD2 }}$	Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.

*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND 1 IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO GND 2 IS RECOMMENDED.

Figure 7. ADuM3442 Pin Configuration

Table 14. ADuM3442 Pin Function Descriptions

Pin No.	Mnemonic	Function
1	VDD1	Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.
2,8	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	Voc	Logic Output C.
6	$V_{\text {OD }}$	Logic Output D.
7	$\mathrm{V}_{\mathrm{E} 1}$	Output Enable 1. Active high logic input. $V_{O C}$ and $V_{O D}$ outputs are enabled when $V_{E 1}$ is high or disconnected. Voc and $V_{O D}$ outputs are disabled when $\mathrm{V}_{\mathrm{E} 1}$ is low. In noisy environments, connecting $\mathrm{V}_{\mathrm{E} 1}$ to an external logic high or low is recommended.
9,15	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
10	$\mathrm{V}_{\mathrm{E} 2}$	Output Enable 2. Active high logic input. V_{OA} and V_{OB} outputs are enabled when $\mathrm{V}_{\mathrm{E} 2}$ is high or disconnected. V_{OA} and $\mathrm{V}_{\text {OB }}$ outputs are disabled when $\mathrm{V}_{\mathrm{E} 2}$ is low. In noisy environments, connecting $\mathrm{V}_{\mathrm{E} 2}$ to an external logic high or low is recommended.
11	VID	Logic Input D.
12	$V_{\text {IC }}$	Logic Input C.
13	$\mathrm{V}_{\text {OB }}$	Logic Output B.
14	VoA	Logic Output A.
16	$\mathrm{V}_{\text {DD2 }}$	Supply Voltage for Isolator Side 2, 3.0 V to 5.5 V.

ADuM3440/ADuM3441/ADuM3442

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3.3 V Operation

Figure 9. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3.3 V Operation (No Output Load)

Figure 10. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3.3 V Operation (15 pF Output Load)

Figure 11. Typical ADuM3440 VDD1 Supply Current vs. Data Rate for 5 V and 3.3 V Operation

Figure 12. Typical ADuM3440 VDD2 Supply Current vs. Data Rate for 5 V and 3.3 V Operation

Figure 13. Typical ADuM3441 VDD1 Supply Current vs. Data Rate for 5 V and 3.3 V Operation

Figure 14. Typical ADuM3441 VDD2 Supply Current vs. Data Rate for 5 V and 3.3 V Operation

Figure 15. Typical ADuM3442 VDD1 or VDD2 Supply Current vs. Data Rate for 5 V and 3.3 V Operation

APPLICATIONS INFORMATION

PC BOARD LAYOUT

The ADuM344x digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 16). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for $V_{D D 1}$ and between Pin 15 and Pin 16 for $\mathrm{V}_{\mathrm{DD} 2}$. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm . Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should be considered unless the ground pair on each package side is connected close to the package.

In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this could cause voltage differentials between pins exceeding the device's absolute maximum ratings, thereby leading to latch-up or permanent damage.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output may differ from the propagation delay to a logic high.

Figure 17. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM344x component.
Propagation delay skew refers to the maximum amount the propagation delay differs between multiple ADuM344x components operating under the same conditions.

SYSTEM-LEVEL ESD CONSIDERATIONS AND ENHANCEMENTS

System-level ESD reliability (for example, per IEC 61000-4-x) is highly dependent on system design, which varies widely by application. The ADuM344x incorporate many enhancements to make ESD reliability less dependent on system design. The enhancements include the following:

- ESD protection cells added to all input/output interfaces.
- Key metal trace resistances reduced using wider geometry and paralleling of lines with vias.
- The SCR effect inherent in CMOS devices is minimized by the use of guarding and isolation techniques between PMOS and NMOS devices.
- Areas of high electric field concentration eliminated using 45° corners on metal traces.
- Supply pin overvoltage prevented with larger ESD clamps between each supply pin and its respective ground.
While the ADuM344x improve system-level ESD reliability, they are no substitute for a robust system-level design. See the AN-793 application note, ESD/Latch-Up Considerations with iCoupler Isolation Products for detailed recommendations on board layout and system-level design.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than $\sim 1 \mu \mathrm{~s}$, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than about $5 \mu \mathrm{~s}$, the input side is assumed unpowered or nonfunctional, in which case the isolator output is forced to a default state (see the Absolute Maximum Ratings section) by the watchdog timer circuit.
The limitation on the magnetic field immunity of the ADuM344x is set by the condition in which induced voltage in the receiving coil of the transformer is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM344x is examined because it represents the most susceptible mode of operation.
The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , thus establishing a 0.5 V margin in which induced voltages can be tolerated.

The voltage induced across the receiving coil is given by
$V=(-d \beta / d t) \sum \pi r_{n}^{2} ; n=1,2, \ldots, N$
where:
β is magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r_{n} is the radius of the $\mathrm{n}^{\text {th }}$ turn in the receiving coil (cm).
Given the geometry of the receiving coil in the ADuM344x and an imposed requirement that the induced voltage be at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated as shown in Figure 18.

Figure 18. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V -still well above the 0.5 V sensing threshold of the decoder.
The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM344x transformers. Figure 19 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown, the ADuM344x is extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example noted, one would have to place a 0.5 kA current 5 mm away from the ADuM344x to affect the component's operation.

Figure 19. Maximum Allowable Current for Various Current-to-ADuM344x Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces could induce error voltages sufficiently large enough to trigger the thresholds of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM344x isolator is a function of the supply voltage, the channel's data rate, and the channel's output load.
For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I(Q)} & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I(Q)} & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{aligned}
& I_{D D O}=I_{D D O(Q)} f \leq 0.5 f_{r} \\
& I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} \times V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O(Q)} \\
& f>0.5 f_{r}
\end{aligned}
$$

where:
$I_{D D I(D)}, I_{D D O}(\mathbb{D})$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz); it is half of the input data rate expressed in units of Mbps.
f_{r} is the input stage refresh rate (Mbps).
$I_{D D I(Q)}, I_{D D O(Q)}$ are the specified input and output quiescent supply currents (mA).
To calculate the total $V_{D D 1}$ and $V_{D D 2}$ supply current, the supply currents for each input and output channel corresponding to $V_{D D 1}$ and $V_{D D 2}$ are calculated and totaled. Figure 8 and Figure 9 provide per-channel supply currents as a function of data rate for an unloaded output condition. Figure 10 provides perchannel supply current as a function of data rate for a 15 pF output condition. Figure 11 through Figure 15 provide total $V_{D D 1}$ and $V_{D D 2}$ supply current as a function of data rate for ADuM3440/ADuM3441/ADuM3442 channel configurations.

ADuM3440/ADuM3441/ADuM3442

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM344x.

Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Figure 20 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition, and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than the 50 -year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.
The insulation lifetime of the ADuM344x depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 20, Figure 21, and Figure 22 illustrate these different isolation voltage waveforms.

Bipolar ac voltage is the most stringent environment. The goal of a 50 -year operating lifetime under the ac bipolar condition determines the maximum working voltage recommended by Analog Devices.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower, which allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 10 can be applied while maintaining the 50 -year minimum lifetime provided the voltage conforms to either the unipolar ac or dc voltage cases. Any cross insulation voltage waveform that does not conform to Figure 21 or Figure 22 should be treated as a bipolar ac waveform and its peak voltage should be limited to the 50 -year lifetime voltage value listed in Table 10.

Note that the voltage presented in Figure 21 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .

Figure 20. Bipolar AC Waveform

Figure 21. Unipolar AC Waveform

Figure 22. DC Waveform

OUTLINE DIMENSIONS

Figure 23. 16-Lead Standard Small Outline Package [SOI Wide Body (RW-16)
Dimension shown in millimeters and (inches)

ORDERING GUIDE

Model	Number of Inputs, VDD Side	Number of Inputs, VD2 Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)	Temperature Range	Package Description	Package Option
ADuM3440CRWZ ${ }^{1,2}$	4	0	150	32	2	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM3441CRWZ ${ }^{1,2}$	3	1	150	32	2	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM3442CRWZ ${ }^{1,2}$	2	2	150	32	2	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16

[^3]
ADuM3440/ADuM3441/ADuM3442

NOTES

NOTES

ADuM3440/ADuM3441/ADuM3442

NOTES

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781.329.4700
 www.analog.com
 Fax: 781.461.3113 ©2007-2008 Analog Devices, Inc. All rights reserved.

[^1]: ${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

[^2]: ${ }^{1} V_{I x}$ and $V_{\text {ox }}$ refer to the input and output signals of a given channel ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D). $\mathrm{V}_{\text {Ex }}$ refers to the output enable signal on the same side as the $\mathrm{V}_{\text {ox }}$ outputs. $\mathrm{V}_{\text {DII }}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of the given channel, respectively.
 ${ }^{2}$ In noisy environments, connecting V_{Ex} to an external logic high or low is recommended.

[^3]: ${ }^{1}$ Tape and reel are available. The addition of an -RL suffix designates a 13" (1,000 units) tape-and-reel option.
 ${ }^{2} Z=$ RoHS Compliant Part.

